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Abstract

The Erflett Temporal-gravitational Calculation System (ETCS) provides a comprehensive
mathematical framework for describing spacetime geometry, gravitational fields, and tem-
poral dynamics within the Erflett world. This document presents the complete theoretical
foundations, including coordinate systems, metric tensors, time dilation effects, and gravita-
tional field equations. The system is implemented as a computational API and interactive
visualisation tools for practical applications.

Keywords: Erflett spacetime, temporal coordination, kinematic gravity, proper time, coordi-
nate transformation, pyramid geometry
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1 Geometric Foundation

1.1 Pyramid Structure

The Erflett world is modelled as an inverted square pyramid with the following geometric
parameters.

Table 1: Fundamental geometric constants of the Erflett pyramid.
Parameter Symbol Value

Diagonal length at reference plane D0 8,776.263 km
Side length at reference plane a0 = D0/

√
2 6,205.755 km

Base area A0 = a2
0 6.205755 × 109 m2

Vertex depth zv −4,739.857 km
Base height zb +1,579.952 km

The coordinate origin is the centroid of the pyramid at standard height:

r0 = (0, 0, 0), (1)

where z = 0 corresponds to the centroid height.

1.2 Geometric Scaling

The pyramid exhibits linear scaling from the vertex. At any height z, the diagonal length D(z)
is:

D(z) = D0 · z − zv

z0 − zv
, (2)

where z0 = 0 is the reference height. The side length at height z is:

a(z) = D(z)√
2

= a0 · z − zv

−zv
. (3)

1.3 Boundary Conditions

The valid spatial domain Ω is defined by:

Ω =
{

(x, y, z) ∈ R3 : zv < z < zb and |x| + |y| ≤ D(z)
2

}
. (4)

This defines a diamond-shaped (rotated square) boundary in the xy-plane at each height. The
centroid divides the pyramid at the ratio 3 : 1 from vertex to base:

z0 − zv

zb − zv
= 3

4 . (5)

2 Coordinate Systems

2.1 Cartesian Coordinates

The standard Cartesian coordinate system (x, y, z) is defined with:

• x-axis: East–West direction (perpendicular to diagonal)
• y-axis: North–South direction (aligned with diagonal)
• z-axis: Vertical direction (positive upward from reference)
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2.2 Rotated Square Base

The square base is rotated 45ř so that the diagonal aligns with the y-axis. Corner positions at
height z are:

North pole: rN =
(
0, D(z)

2 , z
)

(6)

South pole: rS =
(
0, −D(z)

2 , z
)

(7)

East vertex: rE =
(

a(z)
2 , 0, z

)
(8)

West vertex: rW =
(
−a(z)

2 , 0, z
)

(9)

2.3 Phase Classification

The spatial domain is divided into three phases based on position:

φ(x, y, z) =


+1 (North): y > 0 and dN < ε

−1 (South): y < 0 and dS < ε

0 (Axis): |y| < ε

(10)

where dN and dS are distances to the north and south polar axes, respectively, and ε is a small
threshold (typically 100 m). The distances are:

dN (x, y, z) =
√

x2 +
(
y − D(z)

2

)2
(11)

dS(x, y, z) =
√

x2 +
(
y + D(z)

2

)2
(12)

3 X Parameter Theory

3.1 Geometric X Parameter

The geometric X parameter Xgeom represents the local temporal–spatial coupling strength. It is
computed from the distances to both polar axes:

Xgeom(x, y, z) = max(XN , XS) , (13)

where:

XN = Xmax − (Xmax − Xmin) · min
(

dN

dref
, 1
)

(14)

XS = Xmax − (Xmax − Xmin) · min
(

dS

dref
, 1
)

(15)

with reference distance dref(z) = D(z)/2 and constants:

• Xmin = 5.825 (at centroid)
• Xmax = 9.325 (at poles)

Key properties: Xgeom = Xmin at the centroid (0, 0, 0); Xgeom = Xmax at the north/south poles;
smooth interpolation in between.
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Figure 1: Horizontal distribution of the geometric X parameter Xgeom at reference height z = 0.

3.2 Fulika Perturbation

The X parameter experiences periodic modulation due to Theilaht spacetime-distortion period
dynamics:

ξ(DF ) = 1 + εsin sin
(2πDF

ϑ̂

)
, (16)

where:

• DF : Fulika day number since epoch
• εsin = 0.011235955: Perturbation amplitude
• ϑ̂ = 387.092758827 days: Theilaht spacetime-distortion period

3.3 Effective X Parameter

The effective X parameter incorporates both geometric and temporal variations:

Xeff(x, y, z, DF ) = Xgeom(x, y, z) · ξ(DF ). (17)

3.4 Phase-Dependent X for Time Flow

For temporal calculations, a phase-dependent effective X is used:

Xtime(Xeff, φ) =



X2
min

Xeff
φ = +1 (North)

X2
eff

Xmin
φ = −1 (South)

Xmin φ = 0 (Axis)

(18)

This formulation ensures: North hemisphere Xtime < Xmin (faster time flow); South hemi-
sphere Xtime > Xmin (slower time flow); polar axes Xtime = Xmin (reference time flow).
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4 Temporal Dynamics

4.1 Proper Time Ratio

The proper time ratio τratio describes the rate of local proper time relative to the reference point:
dτ

dτ0
= τratio(x, y, z, DF , φ). (19)

This ratio is decomposed into vertical and horizontal components:

τratio = τvertical(z) · τhorizontal(Xeff, φ). (20)

4.2 Vertical Time Dilation

The vertical component depends only on height h = z − z0:

τvertical(h) =



1 − c1
h

d1 + h
h ≥ 0 (Umyria)

1 − c2
|h|

d2 + |h|
−hnivlkut ≤ h < 0 (Erflett)

0.01 + 0.99
( |h| − hnivlkut

|zv| − hnivlkut

)0.3
h < −hnivlkut (Nivlkut)

(21)

where:
• c1 = 0.0001, d1 = 100 km (Umyria Herra parameters)
• c2 = 0.002, d2 = 50 km (Erflett Herra parameters)
• hnivlkut = 13.986 km (Nivlkut Herra boundary depth)

Key properties: τvertical = 1.0 exactly at h = 0; slight increase in the Umyria realm (faster time);
near time-stop at the vertex in the deep Nivlkut realm.

4.3 Horizontal Time Flow

The horizontal component encodes north–south asymmetry:

τhorizontal(Xeff, φ) = Xmin
Xtime(Xeff, φ) . (22)

Expanding:

τhorizontal =



Xeff
Xmin

φ = +1

X3
min

X2
eff

φ = −1

1 φ = 0

(23)

Numerical examples at reference height:
• Centroid (0, 0, 0): τhorizontal = 1.0
• North pole (0, +D0/2, 0): τhorizontal = 1.600858
• South pole (0, −D0/2, 0): τhorizontal = 0.390206

4.4 Complete Proper Time Formula

The complete proper time differential is:

dτ = τratio(x, y, z, DF , φ) dτ0, (24)

where dτ0 is the proper time differential at the reference point.
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Figure 2: Erflett vertical time flow τhorizontal at any height.

Figure 3: Erflett radial profile, time ratio τhorizontal and X at any height.

5 Kinematic Gravity

5.1 Definition

The kinematic gravity gk represents the local gravitational acceleration experienced due to
spacetime curvature. Unlike Newtonian gravity, it depends only on height, not on radial position.

5.2 Mathematical Form

gk(h) =



gref

(
1 − cg

h

dg + h

)
h ≥ 0

gref + (g⊕ − gref)
( |h|

hc

)γ

0 > h ≥ −hc

g⊕ + β (|h| − hc) h < −hc

(25)
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where:

• gref = 2.4525 m/s2 (reference gravity, Earth’s quarter)
• g⊕ = 9.81 m/s2 (Earth-equivalent gravity)
• hc = 38 km (critical depth)
• γ = 1.8 (transition exponent)
• β = 0.0005 m/s2/km (deep gradient)
• cg = 0.0001, dg = 100 km (Umyria parameters)

5.3 Physical Interpretation

Figure 4: Erflett vertical kinematic gravity gk at any height.

The kinematic gravity represents the effective acceleration felt by matter due to temporal
gradients:

gk = −c2 ∂ ln τvertical
∂h

. (26)

This connects gravitational acceleration to time dilation gradients, analogous to general relativistic
gravitational redshift.

6 Time Coordinate Transformation

6.1 Erflett Temporal Mechanics (ETM)

The Erflett Temporal Mechanics (ETM) system defines a universal time coordinate across Erflett.
Time coordinates are given in units of nimneu (n):

1 nimneu = 1.04167 s = 129,399,585,972,246
124,223,602,484,472 s. (27)

6.2 Local Coordinate (LC) Time

The Local Coordinate (LC) time represents proper time experienced at a specific location:

tLC =
∫ tETM

0
τratio(r, t′, φ) dt′. (28)
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For constant position this simplifies to:

tLC = τratio(r, DF , φ) · tETM. (29)

6.3 Transformation Equations

ETM to LC:
nLC = nETM · τratio(x, y, z, DF , φ). (30)

LC to ETM:
nETM = nLC

τratio(x, y, z, DF , φ) . (31)

6.4 ESM Zones

The Erflett Spatial Mechanics (ESM) divides the world into time zones. The ESM offset modifies
time by:

∆tESM = kESM · nsf, (32)

where kESM is the ESM zone number (typically −12 to +12) and nsf = 72 × 24 = 1728 n is the
duration of one styfi.

7 Realm Classification
The Erflett world is divided into three realms based on height.

7.1 Realm Definitions

R(z) =


Umyria Herra z > humy = 96.82 km
Erflett Herra −hniv ≤ z ≤ humy

Nivlkut Herra z < −hniv = −13.986 km
(33)

7.2 Properties by Realm

Table 2: Physical properties of the three Erflett realms.
Realm Height Range Time Flow Gravity Characteristics

Umyira Herra z > +96.82 km τ > 1.0 g < 2.45 m/s2 Erflett Herra; time flows
faster

Erflett Herra −13.99 < z < +96.82 km τ ≈ 1.0 2.45 < g < 3 m/s2 Habitable; reference condi-
tions

Nivlkut Herra z < −13.99 km τ < 1.0 g > 3 m/s2 Dense; time flows slower

7.3 Boundary Transitions

Transitions between realms are continuous:

lim
z→h−

boundary

τ(z) = lim
z→h+

boundary

τ(z). (34)
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8 Computational Implementation

8.1 API Structure

The AISU-ETCS system is implemented as a REST API with the following endpoints.
Analyse Point:

POST /api.php? endpoint = analyze
Body: { "x": km , "y": km , "z": km , " fulika_day ": days }

Returns complete spacetime properties at a point.
Known Locations:

GET /api.php? endpoint = known_locations

Returns predefined reference locations.
Time Conversion:

POST /api.php? endpoint = convert_time
Body: { " time_value ": n, "x": km , "y": km , "z": km ,

" direction ": " etm_to_local " }

8.2 Boundary Validation

All API calls validate coordinates:

valid(x, y, z) =
{

true (x, y, z) ∈ Ω
false otherwise

(35)

Invalid coordinates return an error response indicating the spacetime rift condition.

8.3 Numerical Precision

All calculations use IEEE 754 double precision (64-bit):

• Coordinate precision: ±1 mm
• Time ratio precision: 10−6

• Gravity precision: 10−3 m/s2

9 References

9.1 Foundational Documents

1. AISU-ETCS v1.0 Specification (2025). Initial theoretical framework and coordinate
system definition.

2. Erflett Spacetime Mechanics (2024). Fulika perturbation theory and Theilaht period
calculation.

3. Temporal-Gravitational Coupling Theory (2025). Connection between time dilation
and kinematic gravity.

9.2 Implementation

• API Documentation: https://systems.belkosmos.com/etcs/
• Source Repository: AISU-ETCS v2.0 (PHP/JavaScript)
• Visualisation Tools: 3D WebGL renderer with Three.js
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9.3 Related Systems

• Erflett Time Management (ETM): Universal time coordinate system
• Fulika Calendar System: Astronomical calendar with leap week/day rules
• ESM Time Zones: Spatial time zone divisions

A Notation Summary

Table 3: Summary of mathematical notation used throughout this document.
Symbol Meaning Units

(x, y, z) Cartesian coordinates km
D(z) Diagonal length at height z km
a(z) Side length at height z km
φ Phase classification {−1, 0, +1}
Xgeom Geometric X parameter dimensionless
Xeff Effective X parameter dimensionless
τratio Proper time ratio dimensionless
gk Kinematic gravity m/s2

h Height from reference km
DF Fulika day number days
n Time in nimneu n

B Validation Results

B.1 Reference Point Validation

At the reference point (0, 0, 0):

Xgeom = 5.825 X (36)
τratio = 1.000000 X (37)

gk = 2.4525 m/s2 X (38)

B.2 North Pole Validation

At the north pole (0, +4388.131, 0):

Xgeom = 9.325 X (39)
τratio = 1.600858 X (40)

gk = 2.4525 m/s2 X (41)

B.3 Deep Nivlkut Validation

At depth z = −4000 km:

τratio ≈ 0.03 X (42)
gk ≈ 11.5 m/s2 X (43)
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C Future Extensions

C.1 Proposed Enhancements

1. Full Metric Tensor: Complete (3 + 1)-dimensional spacetime metric

2. Geodesic Equations: Trajectory calculations for free-fall motion

3. Field Equations: Self-consistent field equations analogous to Einstein equations

4. Quantum Extensions: Quantum field theory in curved Erflett spacetime

C.2 Open Questions

• What generates the X parameter asymmetry?

• Is there a Lagrangian formulation?

• Can General Relativity be recovered in limits?

• What is the physical origin of Fulika perturbations?

Document Version: 2.0.1 Last Updated: 19 February 2026 Contact: Al’bina Institute
for Space and Universal Studies
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